Logic and Computation, \& their interactions

Saeed Salehi

University of Tabriz \& $\mathbb{I P M}$

http://SaeedSalehi.ir/

Logic is . . .

- From the Greek word Logos, translated as "sentence", "discourse", "reason", "rule", and "ratio".
- The study of arguments (Wikipedia) "in the disciplines of philosophy, mathematics, and computer science".
- Logic is for constructing proofs which give us reliable confirmation of the truth of the proven proposition.

Logic is . . .

- From the Greek word Logos, translated as "sentence", "discourse", "reason", "rule", and "ratio".
- The study of arguments (Wikipedia) "in the disciplines of philosophy, mathematics, and computer science".
- Logic is for constructing proofs which give us reliable confirmation of the truth of the proven proposition.

Logic is . . .

- From the Greek word Logos, translated as "sentence", "discourse", "reason", "rule", and "ratio".
- The study of arguments (Wikipedia) "in the disciplines of philosophy, mathematics, and computer science".
- Logic is for constructing proofs which give us reliable confirmation of the truth of the proven proposition.

Logic is . . .

- From the Greek word Logos, translated as "sentence", "discourse", "reason", "rule", and "ratio".
- The study of arguments (Wikipedia) "in the disciplines of philosophy, mathematics, and computer science".
- Logic is for constructing proofs which give us reliable confirmation of the truth of the proven proposition.

Mathematical Logic is . . .

- Application of mathematical techniques to logic.
- Mathematical logic (also known as symbolic logic) is a subfield of mathematics with close connections to computer science and philosophical logic. (Wikipedia)
- The field includes both the mathematical study of logic and the applications of formal logic to other areas of mathematics. (Wikipedia)

Mathematical Logic is . . .

- Application of mathematical techniques to logic.
- Mathematical logic (also known as symbolic logic) is a subfield of mathematics with close connections to computer science and philosophical logic. (Wikipedia)
- The field includes both the mathematical study of logic and the applications of formal logic to other areas of mathematics. (Wikipedia)

Mathematical Logic is . . .

- Application of mathematical techniques to logic.
- Mathematical logic (also known as symbolic logic) is a subfield of mathematics with close connections to computer science and philosophical logic. (Wikipedia)
- The field includes both the mathematical study of logic and the applications of formal logic to other areas of mathematics. (Wikipedia)

Mathematical Logic is . . .

- Application of mathematical techniques to logic.
- Mathematical logic (also known as symbolic logic) is a subfield of mathematics with close connections to computer science and philosophical logic. (Wikipedia)
- The field includes both the mathematical study of logic and the applications of formal logic to other areas of mathematics. (Wikipedia)

Hilbert's Entscheidungsproblem = Decision Problem

Finding an Algorithm (or Al-Khwarizmi):
Input: A (Mathematical) Statement.
Output: YES (if universally valid) $N O$ (if not always valid).
Computably Decidable set A : an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YES) or $x \notin A$ (outputs NO).

Algorithm: single-input, Boolean-output $(1,0)$

Hilbert's Entscheidungsproblem = Decision Problem

Finding an Algorithm (or Al-Khwarizmi):
Input:
Output:
YES (if universally valid) $N O$ (if not always valid).
Computably Decidable set A : an aigorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YES) or $x \notin A$ (outputs NO).

Algorithm: single-input, Boolean-output $(1,0)$

Hilbert's Entscheidungsproblem = Decision Problem

Finding an Algorithm (or Al-Khwarizmi): Input: A (Mathematical) Statement.
Output: YES (if universally valid) NO (if not always valid).

Computably Decidable set A : an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YES) or $x \notin A$ (outputs NO).

> Algorithm: single-input, Boolean-output $(1,0)$

Hilbert's Entscheidungsproblem = Decision Problem

Finding an Algorithm (or Al-KhWARIzMI): Input: A (Mathematical) Statement. Output: \quad YES (if universally valid) $N O$ (if not always valid). Computably Decidable set A : an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YES) or $x \notin A$ (outputs NO).

> Algorithm: single-input, Boolean-output $(1,0)$

Hilbert's Entscheidungsproblem = Decision Problem

Finding an Algorithm (or Al-Khwarizmi):
Input: A (Mathematical) Statement.
Output: \quad YES (if universally valid) $N O$ (if not always valid).
Computably Decidable set A : an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YES) or $x \notin A$ (outputs NO).

> Algorithm: single-input, Boolean-output $(1,0)$

Hilbert's Entscheidungsproblem = Decision Problem

Finding an Algorithm (or Al-Khwarizmi):
Input: A (Mathematical) Statement.
Output: \quad YES (if universally valid) $N O$ (if not always valid).
Computably Decidable set A : an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YES) or $x \notin A$ (outputs NO).

Algorithm: single-input, Boolean-output (1,0)

Hilbert's Entscheidungsproblem = Decision Problem

Finding an Algorithm (or Al-Khwarizmi):
Input: A (Mathematical) Statement.
Output: \quad YES (if universally valid) $N O$ (if not always valid).
Computably Decidable set A : an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YES) or $x \notin A$ (outputs NO).

Algorithm: single-input, Boolean-output $(1,0)$

خوارزمى و ميراث علمى وـا

 فرينك ر,

 (1)

باب هـائلوكونوكن

كني وباقيمانده را ورسه جنر آن مال ضربكتى معدار مال اول بدست
راه حل آن جسنين امت : آگر تهام مال اول را ها بيش از كسر

 است واصل آن يك جهارم است ، بس دو سوم مال برابر امت با با يك

 كنار بگذاري وسبس يك سوم باقيمانده را بردارى، اين بكس بـسوم برابر است باجهار جذر هالJ.

 بنجاموششناست.

11
میى

عبارت است از تعداد مردان نوبت اولكى دراين مسـله دومرد است .
ra- اگركسـى بگُويد: مالى امتكه جون آن را در دوسومش
ضربكنى ينج' میشود .
دوسوم جذذ هفتو نيمضربب شود، Tنگاه دوسومرا دردوسوم ضرب
ثى كنى "مى شود جهار نمـم؛ و جهارنهمضرب درهفتونيم مى شودسهو
يك سوم،يسجنـر سه ويكسومعبارتامت از دوسوم جنر مفت ونيم'
بنج، جذر آن را میگیرى بنج مىشود •
مr- اگر كسى بگگيد : مالى است كى خون درسه جنر خودش
خرب شود بنج برابر مال اول مىشود .
راه حل آن جنيناست: چنان است كد كفته باشهد مالى رادرجنـرثُ
ضرب كردم به اندازة بك مال و دوسوم مال اول شد ، يس معدار جذر
اين مال يك درهم ودوسومدرمم است؛ و اصل مال دودرهم وهغت نهم
درهم خو اهد بود .
ابr- اگر كسى بتُويد: مالى امتكه هون بك سوم Tن را كم

ROBERT OF CHESTER'S

LATIN TRANSLATION

OF THE

ALGEBRA OF AL-KHOWARIZMI

with in introduction, critical notes AND AN ENGLISH VERSION

nY
LOUIS CHARLES KARPINSKI
university of michionn
Muhammad ibn Misa, al-Khuwavazmi

Notu geark
THE MACMILLAN COMPANY LONDON I MACMILLAN AND COMPANY LMITED

1915
All rizbl nourwad
c
the book of algebra and almucabola
121
equal to 6 units. I take one-balf of the roots and I multiply the half by itself. I add the product to 6 , and of this sum I take the root. The remainder obtained after subtracting one-half of the roots will designate the first number of girls, and this is two.

Fifteenth Problem

If from a square I subtract four of its roots and then take one-third of the remainder, finding this equal to four of the roots, the square will be $256 .{ }^{\circ}$ Explanation. Since one-third of the remainder is equal to lour roots, you know that the remainder itself will equal 12 roots. Therefore add this to the four, giving 16 roots. This (16) is the root of the square.

Sixteenth Problem

From a square I subtract three of its roots and multiply the remainder by itself; the sum total of this multiplication equals the square.
Explanation. It is evident that the remainder is equal to the root, which amounts to four. The square is 16 .
These now are the sixteen problems which are seen to arise from the former ones, as we have explained. Hence by means of those things which have been set forth you will easily carry through any multiplication that you may wish to attempt in accordance with the art of restoration and opposition.

CHAPTER ON MERCANTILE TRANSACTIONS:
Mercantile transactions and all things pertaining thereto involve two deas and four numbers. ${ }^{4}$ Of these numbers the first is called by the Arabs Almuzahar and is the first one proposed. The second is called Alszian, and recognized as second by means of the first. The third, Almuhen, is unknown. The fourth, Alchemon, is obtained by means of the first and second. Further, these four numbers are so related that the first of them, the measure, is inversely proportional to the last, which is cost. Moreover, three of these numbers are always given or known and the fourth is unknown, and this

'The famous 'rule of three' is the subject of discumion in this chapter.
The two ideses appear to be the notions of quastity and cost; the four numbers represent
unit of measure and price per unit, quantity dosired and coat of the mame. These four techaical

Coding Mathematics

How to write (code) mathematical statements (as input strings)?

Example from Al-Khwarizmi: If from a square, I subtract four of its roots and then take one-third of the remainder, finding this equal to four of the roots, the square will be 256 .

More Modern: $\forall x\left[\frac{1}{3}\left(x^{2}-4 x\right)=4 x \longrightarrow x^{2}=256\right]$.
This holds in the domain $\mathbb{N}-\{0\}=\{1,2,3, \ldots\}$ (but not in \mathbb{N}).

Coding Mathematics

How to write (code) mathematical statements (as input strings)?
Example from Al-Khwarizmi: If from a square, I subtract four of its roots and then take one-third of the remainder, finding this equal to four of the roots, the square will be 256 .

Modern Notation: If I have $\frac{1}{3}\left(x^{2}-4 x\right)=4 x$, then $x^{2}=256$.

Coding Mathematics

How to write (code) mathematical statements (as input strings)?
Example from Al-Khwarizmi: If from a square, I subtract four of its roots and then take one-third of the remainder, finding this equal to four of the roots, the square will be 256 .

Modern Notation: If I have $\frac{1}{3}\left(x^{2}-4 x\right)=4 x$, then $x^{2}=256$.

Coding Mathematics

How to write (code) mathematical statements (as input strings)?
Example from Al-Khwarizmi: If from a square, I subtract four of its roots and then take one-third of the remainder, finding this equal to four of the roots, the square will be 256 .

Modern Notation: If I have $\frac{1}{3}\left(x^{2}-4 x\right)=4 x$, then $x^{2}=256$.

Coding Mathematics

How to write (code) mathematical statements (as input strings)?
Example from Al-Khwarizmi: If from a square, I subtract four of its roots and then take one-third of the remainder, finding this equal to four of the roots, the square will be 256 .

Modern Notation: If I have $\frac{1}{3}\left(x^{2}-4 x\right)=4 x$, then $x^{2}=256$.
More Modern: $\forall x\left[\frac{1}{3}\left(x^{2}-4 x\right)=4 x \longrightarrow x^{2}=256\right]$.
This holds in the domain $\mathbb{N}-\{0\}=\{1,2,3, \cdots\}$ (but not in \mathbb{N}).

Coding Mathematics

How to write (code) mathematical statements (as input strings)?
Example from Al-Khwarizmi: If from a square, I subtract four of its roots and then take one-third of the remainder, finding this equal to four of the roots, the square will be 256 .

Modern Notation: If I have $\frac{1}{3}\left(x^{2}-4 x\right)=4 x$, then $x^{2}=256$.
More Modern: $\forall x\left[\frac{1}{3}\left(x^{2}-4 x\right)=4 x \longrightarrow x^{2}=256\right]$.
This holds in the domain $\mathbb{N}-\{0\}=\{1,2,3, \cdots\}$ (but not in \mathbb{N}).

Coding Mathematics

How to write (code) mathematical statements (as input strings)?
Example from Al-Khwarizmi: If from a square, I subtract four of its roots and then take one-third of the remainder, finding this equal to four of the roots, the square will be 256 .

Modern Notation: If I have $\frac{1}{3}\left(x^{2}-4 x\right)=4 x$, then $x^{2}=256$.
More Modern: $\forall x\left[\frac{1}{3}\left(x^{2}-4 x\right)=4 x \longrightarrow x^{2}=256\right]$.
This holds in the domain $\mathbb{N}-\{0\}=\{1,2,3, \cdots\}$ (but not in \mathbb{N}).
Indeed, $\mathbb{N} \models \forall x\left[\frac{1}{3}\left(x^{2}-4 x\right)=4 x \longrightarrow x=16 \vee x=0\right]$.

Computing the Solution

Khwarizmi's Explanation:

Since one-third of the remainder is equal to four roots, you know that the remainder itself will equal 12 roots. Therefore, add this to the four, giving 16 roots. This (16) is the root of the square.

Modern Notation: Since $\frac{1}{3}\left(x^{2}-4 x\right)=4 x$, then $x^{2}-4 x=12 x$. Therefore, $x^{2}=16 x$. Thus, $x=16$.

In fact, Arithmetic $\vdash \forall x\left[\frac{1}{3}\left(x^{2}-4 x\right)=4 x(\& x \neq 0) \rightarrow x=16\right]$

Computing the Solution

Khwarizmi's Explanation:

\square
Since one-third of the remainder is equal to four roots, you know that the remainder itself will equal 12 roots. Therefore, add this to the four, giving 16 roots. This (16) is the root of the square.

Modern Notation: Since $\frac{1}{3}\left(x^{2}-4 x\right)=4 x$, then $x^{2}-4 x=12 x$. Therefore, $x^{2}=16 x$. Thus, $x=16$.

In fact, Avithmetic $\vdash \forall x\left[\frac{1}{3}\left(x^{2}-4 x\right)=4 x(\& x \neq 0) \longrightarrow x=16\right]$

Computing the Solution

Khwarizmi's Explanation:

Since one-third of the remainder is equal to four roots, you know that the remainder itself will equal 12 roots. Therefore, add this to the four, giving 16 roots. This (16) is the root of the square.

Modern Notation: Since $\frac{1}{3}\left(x^{2}-4 x\right)=4 x$, then $x^{2}-4 x=12 x$ Therefore, $x^{2}=16 x$. Thus, $x=16$.

In fact,

Computing the Solution

Khwarizmi's Explanation:

Since one-third of the remainder is equal to four roots, you know that the remainder itself will equal 12 roots. Therefore, add this to the four, giving 16 roots. This (16) is the root of the square.

Modern Notation: Since $\frac{1}{3}\left(x^{2}-4 x\right)=4 x$, then $x^{2}-4 x=12 x$.

In fact, Arithmetic $\vdash \forall x\left[\frac{1}{3}\left(x^{2}-4 x\right)=4 x(\& x \neq 0)\right.$

Computing the Solution

Khwarizmi's Explanation:

Since one-third of the remainder is equal to four roots, you know that the remainder itself will equal 12 roots. Therefore, add this to the four, giving 16 roots. This (16) is the root of the square.

Modern Notation: Since $\frac{1}{3}\left(x^{2}-4 x\right)=4 x$, then $x^{2}-4 x=12 x$. Therefore, $x^{2}=16 x$. Thus, $x=16$.

In fact, Arithmetic $\vdash \forall x\left[\frac{1}{3}\left(x^{2}-4 x\right)=4 x(\& x \neq 0)\right.$

Computing the Solution

Khwarizmi's Explanation:

Since one-third of the remainder is equal to four roots, you know that the remainder itself will equal 12 roots. Therefore, add this to the four, giving 16 roots. This (16) is the root of the square.

Modern Notation: Since $\frac{1}{3}\left(x^{2}-4 x\right)=4 x$, then $x^{2}-4 x=12 x$. Therefore, $x^{2}=16 x$. Thus, $x=16$.

In fact, \quad Arithmetic $\vdash \forall x\left[\frac{1}{3}\left(x^{2}-4 x\right)=4 x(\& x \neq 0) \longrightarrow x=16\right]$.

Logic for Computer Scientists

Uwe Schöning

Logic for
 Computer Scientists

Uwe Schöning
Abe. Theoretische Informatik
Universitat Ulm
Oberer Eselsher
D- 89069 Ulm
Germany

Uwe Schöning

Reprint of the 1989 Edition

Birkhäuser
Boston • Basel • Berlin

English hardcover edition originally published as Volume 8 in the series Progress in Computer Science and Applied Logic.
German edition was published in 1987 as Logik für Informatker by Wissenschaftsverlag, Marnheim • Vienna • Zürich.

1SBN-13: 978-0-8176-4762-9
e-ISBN-13: 978-0-8176-4763-6 DOI: 10.1007/978-0-8176-4763-6

Library of Congress Cvntrol Number: 2007940259
©2008 Birkhãuser Bostoa
All rights reserved This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhauser Boston, co Springer Science + Business Media LLC, 233 Spring Street, New York, NY 10013 , USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in comnection with any form of information stocrage and retrieval, electronic
adtaptation, computer softuare, or by similar or dissimilar methodology now known or bercafier developed is fortidsen.
The use in this publication of trode names, tradermarks, service marks and similar terms, even if they are not identifiod as such, is not to be taken as as expression of opinion as to whether or not they are subject to proprictary rights.

Cover design by Alex Gerasev.
Printed on acid free paper.
987654321
www.birkhausercem

Uwe Schöning
 Logic for Computer Scientists

With 34 Illustrations

1989

Uwe Schörning
Abt. Theorelische Informatik
Universitat Ulm
Oberer Eselsberg
D-89069 Ul
Germany

```
Lbrary of Congress Calogig-in-Publication Data
Schoning, Uwe, 1955-
    Logic for computer scientists / Uwe Schöning
    p. cm. - (Progress in computer science and appied logic :
v.8)
    Includes bibliographical references.
    *)
    1. Logic, Symbolic and mathematioal 2. Logic programming.
1. Tule.
511.3-dc20 
Logic for Computer Scientists was originally publishod in 1987
as Logikffir Informariker by Wissenschaftsverlag. Mannheim • Viemna • Zürich
```

Printed on acid-free paper O1989 Birkhauser Bo

Birkhäuser
${ }^{\circ}$
All rights reserved. This work may not be translated or copjed in whole or in part without the written permission of the publisher (Birkhauser Boston, clo Springer-Vertag New York, Inc., 175 Fifh Avenue,
New York, NY 10010 . USA) except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electroxic ardpptation, computer software, or by similar or dissimilar methodology now known or herraffice developed is fortidden. The ese or general descriptive names, tride names, trademarks, etc., in this publication, even if the former
are not especially identified, is not to be taken as a sign that sach names, as understood by the Trade Marks and Merchandise Maks Act, may accordingly be used freely by anyone.
ISBN 0.8176-3453.3
Typeset by the author using $L^{A} T_{E} X$
Printed and bound by Qrim-Woodbinc. Woodbine, NJ. Printed in the United Slates of America

9876543

Contents

Preface

By the development of new fields and applications, such as Automated Theorem Proving and Logic Programming, Logic has obtained a new and important role in Computer Science. The traditional mathematical way of dealing with Logic is in some respect not tailored for Computer Science applications. This book emphasizes such Computer Science aspects in Logic. It arose from a series of lectures in 1986 and 1987 on Computer Science It arose from a series of lectures in 1986 and 1987 on Computer Science
Logic at the EWH University in Koblenz, Germany. The goal of this lecLogic at the EWH University in Koblenz, Germany. The goal of this lecture series was to give the undergraduate student an early and theoretically
well-founded access to modern applications of Logic in Computer Science.

A minimal mathematical basis is required, such as an understanding of the set theoretic notation and knowledge about the bsaic mathematical proof techniques (like induction). More sophisticated mathematical knowlodge is not a precondition to read this book. Acquaintance with some conventional programming language, like PASCAL, is assumed.

Several people helped in various ways in the preparation process of the original German version of this book: Johannes Köbler, Eveline and Rainer Schuler, and Hermann Engesser from B.I. Wissenschaftsverlag.

Regarding the English version, I want to express my deep gratitude to Prof. Ronald Book. Without him, this translated version of the book would not have been possible.
Introduction 1
PROPOSITIONAL LOGIC 3
1.1 Foundations 3
1.2 Equivalence and Normal Forms 14
1.3 Horn Formulas 23
1.4 The Compactness Theorem 26
1.5 Resolution 29
2 PREDICATE LOGIC 41
2.1 Foundations 41
2.2 Normal Forms51
61
2.3 Undecidability 70
70
2.5 Resolution 78
2.6 Refinements of Resolution 96
3 LOGIC PROGRAMMING 109
3.1 Answer Generation 109
3.2 Horn Clause Programs. 117
3.3 Evaluation Strategies 131
3.4 PROLOG 141
Bibliography 155
Table of Notations 161
Index 163

Introduction

Formal Logic investigates how assertions are combined and connected, how theorems formally can be deduced from certain axioms, and what kind of object a proof is. In Logic there is a consequent separation of syntactical notions (formulas, proofs) - these are essentially strings of symbols built up according to certain rules - and semantical notions (truth values, models) according to certain rules - and semantical notions (truth values, models)

- these are "interpretations", assignments of "meanings" to the syntactical - these are
objects.

Because of its development from philosophy, the questions investigated in Logic were originally of a more fundamental character, like: What is truth? What theories are axiomatizable? What is a model of a certain axiom system?, and so on. In general, it can be said that traditional Logic is oriented to fundamental questions, whereas Computer Science is interested in what is programmable. This book provides some unification of both aspects.

Computer Science has utilized many subfields of Logic in areas such as program verification, semantics of programming languages, automated theorem proving, and logic programming. This book concentrates on those aspects of Logic which have applications in Computer Science, especially theorem proving and logic programming. From the very beginning, education in Computer Science supports the idea of strict separation between syntax and semantics (of programming languages). Also, recursive definitions, equations and programs are a familiar thing to a first year Computer Science student. This book is oriented in its style of presentation to this style.

In the first Chapter, propositional logic is introduced with emphasis on the resolution calculus and Horn formulas (which have their particular Computer Science applications in later sections). The second Chapter introduces the predicate logic. Again, Computer Science aspects are emphasized, like undecidability and semi-decidability of predicate logic, Herbrand's the-
ory, and building upon this, the resolution calculus (and its refinements) for predicate logic is discussed. Most modern theorem proving programs for predicate logic is discussed. Most modern theorem proving
are

The third Chapter leads to the special version of resolution (SLDresolution) used in logic programming systems, as realized in the logic programming language PROLOG ($=$ Programming in Logic). The idea of this book, though, is not to be a programmer's manual for PROLOG. Rather, the aim is to give the theoretical foundations for an understanding of logic programming in general.

Exercise 1: "What is the secret of your long life?" a centenarian was asked. "I strictly follow my diet: If I don't drink beer for dinner, then I always have fish. Any time I have both beer and fish for dinner, then I do without ice cream. If I have ice cream or don't have beer, then I never eat fish." The questioner found this answer rather confusing. Can you simplify it?

Find out which formal methods (diagrams, graphs, tables, etc.) you used to solve this Exercise. You have done your own first steps to develop a Formal Logic!

Proving or Computing?

Exercise 1: "What is the secret of your long life?"

a centenarian was asked.
"I strictly follow my diet:
If I don't drink beer for dinner, then I always have fish.
If I have both beer and fish for dinner, then I do without ice cream.
If I have ice cream or don't have beer, then I never eat fish.'

The questioner found this answer rather confusing.
Can you simplify it?

Proving or Computing?

Exercise 1: "What is the secret of your long life?"
a centenarian was asked.

```
"I strictly follow my diet:
If I don't drink beer for dinner, then I always have fish. If I have both beer and fish for dinner, then I do without ice cream If I have ice cream or don't have beer, then I never eat fish.'
```

The questioner found this answer rather confusing. Can you simplify it?

Proving or Computing?

Exercise 1: "What is the secret of your long life?"
a centenarian was asked.
"I strictly follow my diet:
If I don't drink beer for dinner, then I always have fish.
If I have both beer and fish for dinner, then I do without ice cream.
If I have ice cream or don't have beer, then I never eat fish."

Proving or Computing?

Exercise 1: "What is the secret of your long life?"
a centenarian was asked.
"I strictly follow my diet:
If I don't drink beer for dinner, then I always have fish.
If I have both beer and fish for dinner, then I do without ice cream.
If I have ice cream or don't have beer, then I never eat fish."
The questioner found this answer rather confusing.
Can you simplify it?

Proving or Computing?

$$
\begin{aligned}
& \qquad B=\text { beer } \quad F=\text { fish } I=\text { ice cream } \\
& \text { If I don't drink beer for dinner, then I always have fish. } \\
& \neg B \rightarrow I \\
& \text { Any time I have both beer and fish for dinner, then I do without } \\
& \text { ice cream. } \\
& \text { If I have ice cream or don't have beer, then I never eat fish. }
\end{aligned}
$$

Proving or Computing?

$$
B=\text { beer } \quad F=\text { fish } \quad I=\text { ice cream }
$$

If I don't drink beer for dinner, then I always have fish.

Any time I have both beer and fish for dinner, then I do without ice cream.

If I have ice cream or don't have beer, then I never eat fish.

Proving or Computing?

$$
B=\text { beer } \quad F=\text { fish } \quad I=\text { ice cream }
$$

If I don't drink beer for dinner, then I always have fish.

$$
\neg B \rightarrow F
$$

Any time I have both beer and fish for dinner, then I do without ice cream.

If I have ice cream or don't have beer, then I never eat fish.

Proving or Computing?

$$
B=\text { beer } \quad F=\text { fish } \quad I=\text { ice cream }
$$

If I don't drink beer for dinner, then I always have fish.

$$
\neg B \rightarrow F
$$

Any time I have both beer and fish for dinner, then I do without ice cream.

$$
B \wedge F \rightarrow \neg I
$$

If I have ice cream or don't have beer, then I never eat fish.

Proving or Computing?

$$
B=\text { beer } \quad F=\text { fish } \quad I=\text { ice cream }
$$

If I don't drink beer for dinner, then I always have fish.

$$
\neg B \rightarrow F
$$

Any time I have both beer and fish for dinner, then I do without ice cream.

$$
B \wedge F \rightarrow \neg I
$$

If I have ice cream or don't have beer, then I never eat fish.

$$
I \vee \neg B \rightarrow \neg F
$$

The Mathematical Analysis of Logic

Being an Essay Towards a Calculus of
Deductive Reasoning

George Boole

$$
\begin{array}{ll}
\text { All Ys are Xs, } & \begin{array}{c}
y=v x \\
\text { No Zs are Ys, } \\
0
\end{array} \\
\cline { 2 - 3 } & 0=v y \\
\hline
\end{array}
$$

\therefore Some Ys are not Zs

THE MATHEMATICAL ANALYSIS

OF LOGIC,

BEING AN ESSAY TOWARDS A CALCULUS OF DEDUCTIVE REASONING.

BY GEORGE BOOLE.

[^0]CAMBRIDGE:
MACMILLAN, BARCLAY, \& MACMILLAN ; LONDON: GEORGE BELL.
$\overline{1847}$

AN INVESTIGATION
 or
 THE LAWS OF THOUGHT
 ox wrich ase roundes
 THE MATHEMATICAL THEORIES OF LOGIG AND PROBABILITIES
 GEORGEB00LE, L.L.D.

Propositional Logic

- Connectives $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$
- Atomic Propositions (without a truth value) P, Q, R,
- More Complex Propositions and Truth Tables

Propositional Logic

- Connectives $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$
- Atomic Propositions (without a truth value) P, Q, R,
- More Complex Propositions and Truth Tables

Propositional Logic

- Connectives $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$
- Atomic Propositions (without a truth value) P, Q, R, \cdots
- More Complex Propositions and Truth Tables

Propositional Logic

- Connectives $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$
- Atomic Propositions (without a truth value) P, Q, R, \cdots
- More Complex Propositions and Truth Tables

Proving or Computing?

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
0	0	0	0	1	1	0
0	0	1	0	1	1	0
0	1	0	1	1	0	0
0	1	1	1	1	0	0
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	0

https://web.stanford.edu/class/cs103/tools/truth-table-tool/

Proving or Computing?

$$
(\neg B \rightarrow F),(B \wedge F \rightarrow \neg I),(I \vee \neg B \rightarrow \neg F)
$$

https://web.stanford.edu/class/cs103/tools/truth-table-tool/

Proving or Computing?

$$
\begin{gathered}
\quad(\neg B \rightarrow F),(B \wedge F \rightarrow \neg I),(I \vee \neg B \rightarrow \neg F) \\
\varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F)
\end{gathered}
$$

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
0	0	0	0	1	1	0
0	0	1	0	1	1	0
0	1	0	1	1	0	0
0	1	1	1	1	0	0
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	0

https://web.stanford.edu/class/cs103/tools/truth-table-tool/

Proving or Computing?

$$
\begin{gathered}
(\neg B \rightarrow F),(B \wedge F \rightarrow \neg I),(I \vee \neg B \rightarrow \neg F) \\
\varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F)
\end{gathered}
$$

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	$\boldsymbol{\varphi}$
0	0	0	0	1	1	0
0	0	1	0	1	1	0
0	1	0	1	1	0	0
0	1	1	1	1	0	0
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	0

https://web.stanford.edu/class/cs103/tools/truth-table-tool/

Proving or Computing?

$$
\begin{gathered}
(\neg B \rightarrow F),(B \wedge F \rightarrow \neg I),(I \vee \neg B \rightarrow \neg F) \\
\varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F)
\end{gathered}
$$

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
0	0	0	0	1	$\mathbf{1}$	0
0	0	1	0	1	1	0
0	1	0	1	1	0	0
0	1	1	1	1	0	0
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	0

https://web.stanford.edu/class/cs103/tools/truth-table-tool/

Proving or Computing?

$$
\begin{gathered}
(\neg B \rightarrow F),(B \wedge F \rightarrow \neg I),(I \vee \neg B \rightarrow \neg F) \\
\varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F)
\end{gathered}
$$

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
0	0	0	0	1	1	0
0	0	1	0	1	1	0
0	1	0	1	1	0	0
0	1	1	1	1	0	0
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	0

https://web.stanford.edu/class/cs103/tools/truth-table-tool/

Proving or Computing?

$$
\begin{gathered}
(\neg B \rightarrow F),(B \wedge F \rightarrow \neg I),(I \vee \neg B \rightarrow \neg F) \\
\varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F)
\end{gathered}
$$

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
0	0	0	0	1	1	0
0	0	1	0	1	1	0
0	1	0	1	1	0	0
0	1	1	1	1	0	0
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	0

https://web.stanford.edu/class/cs103/tools/truth-table-tool/

Proving or Computing?

$$
\begin{gathered}
(\neg B \rightarrow F),(B \wedge F \rightarrow \neg I),(I \vee \neg B \rightarrow \neg F) \\
\varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F)
\end{gathered}
$$

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
0	0	0	0	1	1	0
0	0	1	0	1	1	0
0	1	0	1	1	0	0
0	1	1	1	1	0	0

1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	0

Proving or Computing?

$$
\begin{gathered}
(\neg B \rightarrow F),(B \wedge F \rightarrow \neg I),(I \vee \neg B \rightarrow \neg F) \\
\varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F)
\end{gathered}
$$

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
0	0	0	0	1	1	0
0	0	1	0	1	1	0
0	1	0	1	1	0	0
0	1	1	1	1	0	0
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	0

Proving or Computing?

$$
\begin{gathered}
(\neg B \rightarrow F),(B \wedge F \rightarrow \neg I),(I \vee \neg B \rightarrow \neg F) \\
\varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F)
\end{gathered}
$$

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
0	0	0	0	1	1	0
0	0	1	0	1	1	0
0	1	0	1	1	0	0
0	1	1	1	1	0	0
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	0

Proving or Computing?

$$
\begin{gathered}
(\neg B \rightarrow F),(B \wedge F \rightarrow \neg I),(I \vee \neg B \rightarrow \neg F) \\
\varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F)
\end{gathered}
$$

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
0	0	0	0	1	1	0
0	0	1	0	1	1	0
0	1	0	1	1	0	0
0	1	1	1	1	0	0
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	0

Proving or Computing?

$$
\begin{gathered}
(\neg B \rightarrow F),(B \wedge F \rightarrow \neg I),(I \vee \neg B \rightarrow \neg F) \\
\varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F)
\end{gathered}
$$

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
0	0	0	0	1	1	0
0	0	1	0	1	1	0
0	1	0	1	1	0	0
0	1	1	1	1	0	0
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	0

Proving or Computing?

$$
\begin{gathered}
(\neg B \rightarrow F),(B \wedge F \rightarrow \neg I),(I \vee \neg B \rightarrow \neg F) \\
\varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F)
\end{gathered}
$$

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
0	0	0	0	1	1	0
0	0	1	0	1	1	0
0	1	0	1	1	0	0
0	1	1	1	1	0	0
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	0

https://web.stanford.edu/class/cs103/tools/truth-table-tool/

Proving or Computing?

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1

Proving or Computing?

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1

$\varphi \equiv$
$(B \wedge \neg F \wedge \neg I) \vee$
$(B \wedge \neg F \wedge I) \vee$

Proving or Computing?

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1

$\varphi \equiv$
$(B \wedge \neg F \wedge \neg I) \vee$
$(B \wedge \neg F \wedge I)$
$(B \wedge F \wedge \neg I)$
$\mathcal{S} \alpha \epsilon \epsilon \partial \mathcal{S} \alpha \ell \hbar \tau$. ir

Proving or Computing?

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1

$\varphi \equiv$
$(B \wedge \neg F \wedge \neg I) \vee$
$(B \wedge \neg F \wedge I) \vee$

Proving or Computing?

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1

$\varphi \equiv$
$(B \wedge \neg F \wedge \neg I) \vee$
$(B \wedge \neg F \wedge I) \vee$
$(B \wedge F \wedge \neg I)$

Proving or Computing?

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1

$$
\begin{aligned}
& \varphi \equiv \\
& (B \wedge \neg F \wedge \neg I) \vee \\
& (B \wedge \neg F \wedge I) \vee \\
& (B \wedge F \wedge \neg I) \\
& \equiv(B \wedge \neg F) \vee(B \wedge F \wedge \neg I) \equiv B \wedge(\neg F \vee[F \wedge \neg I]) \equiv B \wedge(\neg F \vee \neg I)
\end{aligned}
$$

Proving or Computing?

B	F	I	$\neg B \rightarrow F$	$B \wedge F \rightarrow \neg I$	$I \vee \neg B \rightarrow \neg F$	φ
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1

$$
\begin{aligned}
& \varphi \equiv \\
& (B \wedge \neg F \wedge \neg I) \vee \\
& (B \wedge \neg F \wedge I) \vee \\
& (B \wedge F \wedge \neg I) \\
& \equiv(B \wedge \neg F) \vee(B \wedge F \wedge \neg I) \equiv B \wedge(\neg F \vee[F \wedge \neg I]) \equiv B \wedge(\neg F \vee \neg I) \\
& \quad \varphi \equiv B \wedge \neg(F \wedge I)
\end{aligned}
$$

Axiom / Axiomatic / Axiomaitze

Merriam-Webster:
www.merriam-webster.com

Axiom:

a statement accepted as true as the basis for argument or inference Postulate

Axiomatic:

based on or involving an axiom or system of axioms
AXIOMATIZATION:
the act or process of reducing to a system of axioms

Axiom / Axiomatic / Axiomaitze

Merriam-Webster:
www.merriam-webster.com

AxIOM:

a statement accepted as true as the basis for argument or inference Postulate

Axiomatic:
based on or involving an axiom or system of axioms
AXIOMATIZATION:
the act or process of reducing to a system of axioms

Axiom / Axiomatic / Axiomaitze

Merriam-Webster:
www.merriam-webster.com

Axiom:

a statement accepted as true as the basis for argument or inference Postulate

Axiomatic:

based on or involving an axiom or system of axioms
Axiomatization:
the act or process of reducing to a system of axioms

Axiom / Axiomatic / Axiomaitze

Merriam-Webster:
www.merriam-webster.com

Axiom:

a statement accepted as true as the basis for argument or inference Postulate

Axiomatic:
based on or involving an axiom or system of axioms

AXIOMATIZATION:

the act or process of reducing to a system of axioms

Axiom / Axiomatic / Axiomaitze

a statement or proposition which is regarded as being established, accepted, or self-evidently true the axiom that sport builds character Math: a statement or proposition on which an abstractly defined structure is based Origin: late 15th century: from French axiome or Latin axioma, from Greek axio-ma 'what is thought fitting', from axios 'worthy' AXIOMATIC: self-evident or unquestionable it is axiomatic that good athletes have a strong mental attitude Math: relating to or containing axioms AxIOMATIZE: express (a theory) as a set of axioms
the attempts that are made to axiomatize linguistics

Axiom / Axiomatic / Axiomaitze

> Oxford:

www. oxforddictionaries.com

Axiom:

a statement or proposition which is regarded as being established, accepted, or self-evidently true the axiom that sport builds character Math: a statement or proposition on which an abstractly defined structure is based Origin: late 15th century: from French axiome or Latin axioma, from Greek axio-ma 'what is thought fitting', from axios 'worthy' AXIOMATIC: self-evident or unquestionable it is axiomatic that good athletes have a strong mental attitude Math: relating to or containing axioms AXIOMATIZE: express (a theory) as a set of axioms

Axiom / Axiomatic / Axiomaitze

> Oxford:

www. oxforddictionaries.com

Axiom:

a statement or proposition which is regarded as being established, accepted, or self-evidently true the axiom that sport builds character Math: a statement or proposition on which an abstractly defined structure is based Origin: late 15th century: from French axiome or Latin axioma, from Greek axio-ma 'what is thought fitting', from axios 'worthy' AXIOMATIC: self-evident or unquestionable it is axiomatic that good athletes have a strong mental attitude Math: relating to or containing axioms AXIOMATIZF: exnress (a theory) as a set of axioms

Axiom / Axiomatic / Axiomaitze

Oxford:

www. oxforddictionaries.com

Axiom:

a statement or proposition which is regarded as being established, accepted, or self-evidently true the axiom that sport builds character Math: a statement or proposition on which an abstractly defined structure is based Origin: late 15th century: from French axiome or Latin axioma, from Greek axio-ma 'what is thought fitting', from axios 'worthy'

AXIOMATIC: self-evident or unquestionable
Math: relating to or containing axioms
AXIOMATIZF: exnress (a theory) as a set of axioms

Axiom / Axiomatic / Axiomaitze

Oxford:

www. oxforddictionaries.com

Axiom:

a statement or proposition which is regarded as being established, accepted, or self-evidently true the axiom that sport builds character Math: a statement or proposition on which an abstractly defined structure is based Origin: late 15th century: from French axiome or Latin axioma, from Greek axio-ma 'what is thought fitting', from axios 'worthy'

AXIOMATIC: self-evident or unquestionable
it is axiomatic that good athletes have a strong mental attitude
Math: relating to or containing axioms
AXIOMATIZE: express (a theory) as a set of axioms

Axiom / Axiomatic / Axiomaitze

Oxford:

```
www.oxforddictionaries.com
```


Axiom:

a statement or proposition which is regarded as being established, accepted, or self-evidently true the axiom that sport builds character Math: a statement or proposition on which an abstractly defined structure is based Origin: late 15th century: from French axiome or Latin axioma, from Greek axio-ma 'what is thought fitting', from axios 'worthy'

AXIOMATIC: self-evident or unquestionable
it is axiomatic that good athletes have a strong mental attitude Math: relating to or containing axioms

Axiom / Axiomatic / Axiomaitze

Oxford:
www. oxforddictionaries.com

Axiom:

a statement or proposition which is regarded as being established, accepted, or self-evidently true the axiom that sport builds character Math: a statement or proposition on which an abstractly defined structure is based Origin: late 15th century: from French axiome or Latin axioma, from Greek axio-ma 'what is thought fitting', from axios 'worthy'

AXIOMATIC: self-evident or unquestionable
it is axiomatic that good athletes have a strong mental attitude Math: relating to or containing axioms

AXIOMATIZE: express (a theory) as a set of axioms the attempts that are made to axiomatize linguistics

Algebraic Axiomatizing "The Laws of Thought"

Language:

Idempotence:
Commutativity
Associativity:
Distributivity:
Distributivity:
Tautology:
Contradiction:
Negation:
Negation:
DeMorgan:

Algebraic Axiomatizing "The Laws of Thought"

Language: $\perp, \top \neg \wedge, \vee \equiv$

Idempotence:
Cominutativity
Associativity:
Distributivity:
Distributivity:
Tautology:
Contradiction
Negation:
Negation
DeMorgan:

Algebraic Axiomatizing "The Laws of Thought"

Language: $\perp, \top \neg \quad \wedge, \vee \equiv$

Denorgan:

$$
p \vee p \equiv p
$$

Algebraic Axiomatizing "The Laws of Thought"

Language: $\perp,\rceil \neg \wedge, \vee \equiv$

$$
\begin{aligned}
& p \vee p \equiv p \\
& p \vee q \equiv q \vee p
\end{aligned}
$$

Negation
DoMorgan:

Algebraic Axiomatizing "The Laws of Thought"

Language: $\perp, \top \neg \wedge, \vee \equiv$

$$
\begin{aligned}
& p \vee p \equiv p \\
& p \vee q \equiv q \vee p \\
& p \vee(q \vee r) \equiv(p \vee q) \vee r
\end{aligned}
$$

Algebraic Axiomatizing "The Laws of Thought"

Language: $\perp, \top \neg \wedge, \vee \equiv$

$$
\begin{aligned}
& p \vee p \equiv p \\
& p \vee q \equiv q \vee p \\
& p \vee(q \vee r) \equiv(p \vee q) \vee r
\end{aligned}
$$

Negation
DeMorgan:

Algebraic Axiomatizing "The Laws of Thought"

Language: $\perp, \top \neg \wedge, \vee \equiv$

$$
\begin{array}{ll}
\text { Idempotence: } & p \wedge p \equiv p \\
\text { Commutativity: } & p \wedge q \equiv q \wedge p \\
\text { Associativity: } & p \wedge(q \wedge r) \equiv(p \wedge q) \wedge r \\
\text { Distributivity: } & p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \\
\text { Distributivity: } & p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)
\end{array}
$$

$$
\begin{aligned}
& p \vee p \equiv p \\
& p \vee q \equiv q \vee p \\
& p \vee(q \vee r) \equiv(p \vee q) \vee r
\end{aligned}
$$

Algebraic Axiomatizing "The Laws of Thought"

Language: $\perp, \top \neg \wedge, \vee \equiv$

Negatton

$$
\begin{aligned}
& p \vee p \equiv p \\
& p \vee q \equiv q \vee p \\
& p \vee(q \vee r) \equiv(p \vee q) \vee r \\
& p \vee \top \equiv \top
\end{aligned}
$$

Algebraic Axiomatizing "The Laws of Thought"

Language: $\perp, \top \neg \wedge, \vee \equiv$

Idempotence: $\quad p \wedge p \equiv p$
Commutativity: $\quad p \wedge q \equiv q \wedge p$
Associativity: $\quad p \wedge(q \wedge r) \equiv(p \wedge q) \wedge r$
Distributivity: $\quad p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
Distributivity: $\quad p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
Tautology: $\quad p \wedge \top \equiv p$
Contradiction: $\quad p \wedge \perp \equiv \perp$
Negation:
Negation:
Damorgan:

$$
\begin{aligned}
& p \vee p \equiv p \\
& p \vee q \equiv q \vee p \\
& p \vee(q \vee r) \equiv(p \vee q) \vee r \\
& \\
& p \vee \top \equiv \top \\
& p \vee \perp \equiv p
\end{aligned}
$$

Algebraic Axiomatizing "The Laws of Thought"

Language: $\perp, \top \neg \wedge, \vee \equiv$

$$
\begin{array}{ll}
\text { Idempotence: } & p \wedge p \equiv p \\
\text { Commutativity: } & p \wedge q \equiv q \wedge p \\
\text { Associativity: } & p \wedge(q \wedge r) \equiv(p \wedge q) \wedge r \\
\text { Distributivity: } & p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \\
\text { Distributivity: } & p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r) \\
\text { Tautology: } & p \wedge \top \equiv p \\
\text { Contradiction: } & p \wedge \perp \equiv \perp \\
\text { Negation: } & p \wedge(\neg p) \equiv \perp
\end{array}
$$

$$
\begin{aligned}
& p \vee p \equiv p \\
& p \vee q \equiv q \vee p \\
& p \vee(q \vee r) \equiv(p \vee q) \vee r \\
& \\
& p \vee \top \equiv \top \\
& p \vee \perp \equiv p \\
& p \vee(\neg p) \equiv \top
\end{aligned}
$$

Algebraic Axiomatizing "The Laws of Thought"

Language: $\perp, \top \neg \wedge, \vee \equiv$

$$
\begin{aligned}
& p \vee p \equiv p \\
& p \vee q \equiv q \vee p \\
& p \vee(q \vee r) \equiv(p \vee q) \vee r \\
& \\
& p \vee \top \equiv \top \\
& p \vee \perp \equiv p \\
& p \vee(\neg p) \equiv \top \\
& \neg(\neg p) \equiv p
\end{aligned}
$$

Algebraic Axiomatizing "The Laws of Thought"

Language: $\perp, \top \neg \wedge, \vee \equiv$

Idempotence: $\quad p \wedge p \equiv p$
Commutativity: $\quad p \wedge q \equiv q \wedge p$
Associativity: $\quad p \wedge(q \wedge r) \equiv(p \wedge q) \wedge r$
Distributivity: $\quad p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
Distributivity: $\quad p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
Tautology: $\quad p \wedge T \equiv p$
Contradiction: $\quad p \wedge \perp \equiv \perp$
Negation: $\quad p \wedge(\neg p) \equiv \perp$
Negation:
DeMorgan: $\quad \neg(p \wedge q) \equiv(\neg p) \vee(\neg q)$

$$
\begin{aligned}
& p \vee p \equiv p \\
& p \vee q \equiv q \vee p \\
& p \vee(q \vee r) \equiv(p \vee q) \vee r \\
& \\
& p \vee \top \equiv \top \\
& p \vee \perp \equiv p \\
& p \vee(\neg p) \equiv \top \\
& \neg(\neg p) \equiv p \\
& \neg(p \vee q) \equiv(\neg p) \wedge(\neg q)
\end{aligned}
$$

Computing the PROOF!

https://www.wolframalpha.com/

Computing the PROOF!

$$
\begin{aligned}
& \quad \varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F) \\
& \equiv(B \vee F) \wedge(\neg B \neg \vee F \vee \neg I) \wedge([B \wedge \neg I] \vee \neg F) \\
& \equiv(B \vee F) \wedge(\neg B \vee \neg F \vee \neg I) \wedge(B \vee \neg F) \wedge(\neg I \vee \neg F) \\
& \equiv(B \vee F) \wedge(B \vee \neg F) \wedge(\neg B \vee \neg I \vee \neg F) \wedge(\neg I \vee \neg F)) \\
& \equiv(B \vee[F \wedge \neg F])) \wedge(\neg I \vee \neg F)
\end{aligned}
$$

https://www.wolframalpha.com/

Computing the PROOF!

$$
\begin{aligned}
& \quad \varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F) \\
& \equiv(B \vee F) \wedge(\neg B \neg \vee F \vee \neg I) \wedge([B \wedge \neg I] \vee \neg F) \\
& \equiv(B \vee F) \wedge(\neg B \vee \neg F \vee \neg I) \wedge(B \vee \neg F) \wedge(\neg I \vee \neg F) \\
& \equiv(B \vee F) \wedge(B \vee \neg F) \wedge(\neg B \vee \neg I \vee \neg F) \wedge(\neg I \vee \neg F))
\end{aligned}
$$

Computing the PROOF!

$$
\begin{aligned}
& \varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F) \\
& \equiv(B \vee F) \wedge(\neg B \neg \vee F \vee \neg I) \wedge([B \wedge \neg I] \vee \neg F) \\
& \equiv(B \vee F) \wedge(\neg B \vee \neg F \vee \neg I) \wedge(B \vee \neg F) \wedge(\neg I \vee \neg F)
\end{aligned}
$$

$$
\equiv(B \vee F) \wedge(B \vee \neg F) \wedge(\neg B \vee \neg I \vee \neg F) \wedge(\neg I \vee \neg F)
$$

Computing the PROOF!

$$
\begin{aligned}
& \quad \varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F) \\
& \equiv(B \vee F) \wedge(\neg B \neg \vee F \vee \neg I) \wedge([B \wedge \neg I] \vee \neg F) \\
& \equiv(B \vee F) \wedge(\neg B \vee \neg F \vee \neg I) \wedge(B \vee \neg F) \wedge(\neg I \vee \neg F) \\
& \equiv(B \vee F) \wedge(B \vee \neg F) \wedge(\neg B \vee \neg I \vee \neg F) \wedge(\neg I \vee \neg F)
\end{aligned}
$$

Computing the PROOF!

$$
\begin{aligned}
& \quad \varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F) \\
& \equiv(B \vee F) \wedge(\neg B \neg \vee F \vee \neg I) \wedge([B \wedge \neg I] \vee \neg F) \\
& \equiv(B \vee F) \wedge(\neg B \vee \neg F \vee \neg I) \wedge(B \vee \neg F) \wedge(\neg I \vee \neg F) \\
& \equiv(B \vee F) \wedge(B \vee \neg F) \wedge(\neg B \vee \neg I \vee \neg F) \wedge(\neg I \vee \neg F) \\
& \equiv(B \vee[F \wedge \neg F]) \quad \wedge \quad(\neg I \vee \neg F)
\end{aligned}
$$

Computing the PROOF!

$$
\begin{aligned}
& \quad \varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F) \\
& \equiv \\
& \equiv(B \vee F) \wedge(\neg B \neg \vee F \vee \neg I) \wedge([B \wedge \neg I] \vee \neg F) \\
& \equiv(B \vee F) \wedge(\neg B \vee \neg F \vee \neg I) \wedge(B \vee \neg F) \wedge(\neg I \vee \neg F) \\
& \equiv(B \vee F) \wedge(B \vee \neg F) \wedge(\neg B \vee \neg I \vee \neg F) \wedge(\neg I \vee \neg F) \\
& \equiv(B \vee[F \wedge \neg F]) \quad \wedge \quad(\neg I \vee \neg F) \\
& \equiv
\end{aligned}
$$

Computing the PROOF!

$$
\begin{aligned}
& \quad \varphi=(\neg B \rightarrow F) \wedge(B \wedge F \rightarrow \neg I) \wedge(I \vee \neg B \rightarrow \neg F) \\
& \equiv(B \vee F) \wedge(\neg B \neg \vee F \vee \neg I) \wedge([B \wedge \neg I] \vee \neg F) \\
& \equiv(B \vee F) \wedge(\neg B \vee \neg F \vee \neg I) \wedge(B \vee \neg F) \wedge(\neg I \vee \neg F) \\
& \equiv(B \vee F) \wedge(B \vee \neg F) \wedge(\neg B \vee \neg I \vee \neg F) \wedge(\neg I \vee \neg F) \\
& \equiv(B \vee[F \wedge \neg F]) \quad \wedge \quad(\neg I \vee \neg F) \\
& \equiv
\end{aligned}
$$

https://www.wolframalpha.com/

Axiomatizing Propositional Logic

Some Theorems (EXERCISES):
$\alpha \rightarrow \alpha$

Axiomatizing Propositional Logic

$\mathrm{AX}_{1} \alpha \rightarrow(\beta \rightarrow \alpha)$
$\mathrm{AX}_{2}[\alpha \rightarrow(\beta \rightarrow \gamma)] \rightarrow[(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)]$
$\mathrm{AX}_{3}(\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta)$

Some Theorems (EXERCISES):

Axiomatizing Propositional Logic

$\mathrm{AX}_{1} \alpha \rightarrow(\beta \rightarrow \alpha)$
$\mathrm{AX}_{2}[\alpha \rightarrow(\beta \rightarrow \gamma)] \rightarrow[(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)]$
$\mathrm{AX}_{3} \quad(\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta)$
$\operatorname{RUL} \frac{\alpha, \alpha \rightarrow \beta}{\beta}$
Some Theorems (EXERCISES):

Axiomatizing Propositional Logic

$\mathrm{AX}_{1} \alpha \rightarrow(\beta \rightarrow \alpha)$
$\mathrm{AX}_{2}[\alpha \rightarrow(\beta \rightarrow \gamma)] \rightarrow[(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)]$
$\mathrm{AX}_{3}(\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta)$
$\operatorname{RUL} \frac{\alpha, \alpha \rightarrow \beta}{\beta}$
Some Theorems (EXERCISES):
$\alpha \rightarrow \alpha$
$(\neg \beta) \rightarrow(\beta \rightarrow \alpha)$
$(\alpha \rightarrow \beta) \rightarrow(\neg \beta \rightarrow \neg \alpha)$

$$
[(\alpha \rightarrow \beta) \rightarrow \alpha] \rightarrow \alpha
$$

Predicate Logic

- Quantifiers \forall, \exists
- A Language of Undefined Relations or Functions
(or Constants)
- More Complex Propositions and Models (Complicated Algebraic Structures)

Predicate Logic

- Quantifiers \forall, \exists
- A Language of Undefined Relations or Functions
(or Constants)
- More Complex Propositions and Models (Complicated Algebraic Structures)

Predicate Logic

- Quantifiers \forall, \exists
- A Language of Undefined Relations or Functions (or Constants)
- More Complex Propositions and Models
(Complicated Algebraic Structures)

Axiomatizing Predicate Logic
 Gödel's Completeness Theorem (1929)

From An Axiomatization of (Logically) Valid Formulas:

- $\alpha \rightarrow(\beta \rightarrow \alpha)$
- $[\alpha \rightarrow(\beta \rightarrow \gamma)] \rightarrow[(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)]$
- $\forall x \varphi(x) \rightarrow \varphi(t) \quad$ - $\varphi \rightarrow \forall x \varphi[x$ is not free in φ]
- $\forall x(\varphi \rightarrow \psi) \rightarrow(\forall x \varphi \rightarrow \forall x \psi)$

With the Modus Ponens Rule:
All the Universally Valid Formulas Can be generated.

Axiomatizing Predicate Logic

Gödel's Completeness Theorem (1929)

From An Axiomatization of (Logically) Valid Formulas:

- $\alpha \rightarrow(\beta \rightarrow \alpha) \quad$ - $(\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta)$
- $[\alpha \rightarrow(\beta \rightarrow \gamma)] \rightarrow[(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)]$
- $\forall x \varphi(x) \rightarrow \varphi(t) \quad \varphi \rightarrow \forall x \varphi[x$ is not free in φ]
- $\forall x(\varphi \rightarrow \psi) \rightarrow(\forall x \varphi \rightarrow \forall x \psi)$

With the Modus Ponens Rule:
All the Universally Valid Formulas Can be generated.

Axiomatizing Predicate Logic

Gödel's Completeness Theorem (1929)

From An Axiomatization of (Logically) Valid Formulas:

- $\alpha \rightarrow(\beta \rightarrow \alpha) \quad$ - $(\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta)$
- $[\alpha \rightarrow(\beta \rightarrow \gamma)] \rightarrow[(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)]$
- $\forall x \varphi(x) \rightarrow \varphi(t) \quad$ - $\varphi \rightarrow \forall x \varphi[x$ is not free in φ]
- $\forall x(\varphi \rightarrow \psi) \rightarrow(\forall x \varphi \rightarrow \forall x \psi)$

With the Modus Ponens Rule:
All the Universally Valid Formulas can be generated.

Axiomatizing Predicate Logic

Gödel's Completeness Theorem (1929)

From An Axiomatization of (Logically) Valid Formulas:

- $\alpha \rightarrow(\beta \rightarrow \alpha) \quad$ - $(\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta)$
- $[\alpha \rightarrow(\beta \rightarrow \gamma)] \rightarrow[(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)]$
- $\forall x \varphi(x) \rightarrow \varphi(t) \quad$ - $\varphi \rightarrow \forall x \varphi[x$ is not free in φ]
- $\forall x(\varphi \rightarrow \psi) \rightarrow(\forall x \varphi \rightarrow \forall x \psi)$

With the Modus Ponens Rule: $\quad \bullet \frac{\varphi, \varphi \rightarrow \psi}{\psi}$
All the Universally Valid Formulas can be generated.

Axiomatizing Predicate Logic

Gödel's Completeness Theorem (1929)

From An Axiomatization of (Logically) Valid Formulas:

- $\alpha \rightarrow(\beta \rightarrow \alpha) \quad$ - $(\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta)$
- $[\alpha \rightarrow(\beta \rightarrow \gamma)] \rightarrow[(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)]$
- $\forall x \varphi(x) \rightarrow \varphi(t) \quad$ - $\varphi \rightarrow \forall x \varphi[x$ is not free in φ]
- $\forall x(\varphi \rightarrow \psi) \rightarrow(\forall x \varphi \rightarrow \forall x \psi)$

With the Modus Ponens Rule: $\quad \bullet \frac{\varphi, \varphi \rightarrow \psi}{\psi}$
All the Universally Valid Formulas can be generated.

Computably Decidable Set

Computably Decidable set A : an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YES) or $x \notin A$ (outputs NO).

Algorithm: single-input, Boolean-output $(1,0)$ Propositional Logic is Decidable.

Algorithms: Truth-Tables, Various Deductive Calculi, etc.
Now the question is the speed of algorithms...

Computably Decidable Set

Computably Decidable set A : an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YeS) or $x \notin A$ (outputs NO).

Algorithm: single-input, Boolean-output $(1,0)$ Propositional Logic is DECIDABLE.

Algorithms: Truth-Tables, Various Deductive Calculi, etc. Now the question is the speed of algorithms

Computably Decidable Set

Computably Decidable set A : an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YeS) or $x \notin A$ (outputs NO).

Algorithm: single-input, Boolean-output $(1,0)$
Propositional Logic is DECIDABLE.
Algorithms: Truth-Tables, Various Deductive Calculi, etc.
Now the question is the speed of algorithms

Computably Decidable Set

Computably Decidable set A : an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YES) or $x \notin A$ (outputs NO).

Algorithm: single-input, Boolean-output $(1,0)$
Propositional Logic is DECIDABLE.
Algorithms: Truth-Tables, Various Deductive Calculi, etc.
Now the question is the speed of algorithms

Computably Decidable Set

Computably Decidable set A : an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YeS) or $x \notin A$ (outputs NO).

Algorithm: single-input, Boolean-output (1,0)
Propositional Logic is Decidable.
Algorithms: Truth-Tables, Various Deductive Calculi, etc.
Now the question is the speed of algorithms

Computably Decidable Set

Computably Decidable set A : an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YeS) or $x \notin A$ (outputs NO).

Algorithm: single-input, Boolean-output (1,0)
Propositional Logic is Decidable.
Algorithms: Truth-Tables, Various Deductive Calculi, etc. Now the question is the speed of algorithms ...

Computably Enumerable Set

Computably Enumerable set A : an (input-free) algorithm \mathcal{P} lists all members of A; i.e., $A=$ output (\mathcal{P}).

Algorithm: input-free, outputs a set.

- A Good Outcome: Introducing Turing Machines
- the grand grandfather of today's modern computers.

Computably Enumerable Set

Computably Enumerable set A : an (input-free) algorithm \mathcal{P} lists all members of A; i.e., $A=\operatorname{output}(\mathcal{P})$.
output:

Algorithm: input-free, outputs a set.
Predicate Logic is Computably Enumerable (GÖDEL 1929).
Predicate I agic is Not Decinabif (Church \& Turing 1936).
\rightarrow A Good Outcome: Introducing Turing Machines - the grand grandfather of today's modern computers.

Computably Enumerable Set

Computably Enumerable set A : an (input-free) algorithm \mathcal{P} lists all members of A; i.e., $A=\operatorname{output}(\mathcal{P})$.

$$
\text { Algorithm } \xrightarrow{\text { output: }}\left\{a_{0}, a_{1}, a_{2}, \cdots\right\}=A
$$

Algorithm: input-free, outputs a set.

Predicate Logic is Computably Enumerable (Gödel 1929).

Predicate Logic is Not Decidable (Church \& Turing 1936).

- A Good Outcome: Introducing Turing Machines - the grand grandfather of today's modern computers.

Computably Enumerable Set

Computably Enumerable set A : an (input-free) algorithm \mathcal{P} lists all members of A; i.e., $A=$ output (\mathcal{P}).

$$
\text { Algorithm } \xrightarrow{\text { output: }}\left\{a_{0}, a_{1}, a_{2}, \cdots\right\}=A
$$

Algorithm: input-free, outputs a set.

$$
\begin{aligned}
& \text { Predicate Logic is Computably Enumerable (GÖDEL 1929). } \\
& \text { Predicate Logic is Not Decidable (ChURCH \& TURING 1936). }
\end{aligned}
$$

Computably Enumerable Set

Computably Enumerable set A : an (input-free) algorithm \mathcal{P} lists all members of A; i.e., $A=\operatorname{output}(\mathcal{P})$.

$$
\text { Algorithm } \xrightarrow{\text { output: }}\left\{a_{0}, a_{1}, a_{2}, \cdots\right\}=A
$$

Algorithm: input-free, outputs a set.
Predicate Logic is Computably Enumerable (Gödel 1929).
Predicate Logic is Not Decidable (Church \& Turing 1936).

- A Good Outcome: Introducing Turing Machines - the grand grandfather of today's modern computers.

Computably Enumerable Set

Computably Enumerable set A : an (input-free) algorithm \mathcal{P} lists all members of A; i.e., $A=\operatorname{output}(\mathcal{P})$.

$$
\text { Algorithm } \xrightarrow{\text { output: }}\left\{a_{0}, a_{1}, a_{2}, \cdots\right\}=A
$$

Algorithm: input-free, outputs a set.
Predicate Logic is Computably Enumerable (Gödel 1929).
Predicate Logic is Not Decidable (Church \& Turing 1936).

Computably Enumerable Set

Computably Enumerable set A : an (input-free) algorithm \mathcal{P} lists all members of A; i.e., $A=\operatorname{output}(\mathcal{P})$.

$$
\text { Algorithm } \xrightarrow{\text { output: }}\left\{a_{0}, a_{1}, a_{2}, \cdots\right\}=A
$$

Algorithm: input-free, outputs a set.
Predicate Logic is Computably Enumerable (Gödel 1929).
Predicate Logic is Not Decidable (Church \& Turing 1936).

- A Good Outcome: Introducing Turing Machines
- the grand grandfather of today's modern computers.

Decision Problem, again

Decision Problem for the Structure $(\mathfrak{M}, \mathcal{L})$
Innut: A First-Order Sentence φ in the Language \mathcal{L}. Output: \quad YES (if $\mathfrak{N} \mid=\varphi$) NO (if $\mathfrak{M} \notin \varphi$).

Examples:

Decision Problem, again

Decision Problem for the Structure $(\mathfrak{M}, \mathcal{L})$:

```
Input:
A First-Order Sentence }\varphi\mathrm{ in the Language L
Output: YES (if \mathfrak{M}}=\varphi)NO(\mathrm{ (if }\mathfrak{M}|\not=\varphi)\mathrm{ ).
```


Examples:

Decision Problem, again

Decision Problem for the Structure $(\mathfrak{M}, \mathcal{L})$:

Input: A First-Order Sentence φ in the Language \mathcal{L}.

Examples:

Decision Problem, again

Decision Problem for the Structure $(\mathfrak{M}, \mathcal{L})$:
Input: A First-Order Sentence φ in the Language \mathcal{L}. Output: \quad YES (if $\mathfrak{M} \vDash \varphi$) NO (if $\mathfrak{M} \not \vDash \varphi$).

Examples:

Decision Problem, again

Decision Problem for the Structure $(\mathfrak{M}, \mathcal{L})$:
Input: A First-Order Sentence φ in the Language \mathcal{L}. Output: \quad YES (if $\mathfrak{M} \vDash \varphi$) NO (if $\mathfrak{M} \not \vDash \varphi$).

Examples:

- $\mathbb{N} \not \vDash \forall x \exists y(x+y=0)$ but $\mathbb{Z} \models \forall x \exists y(x+y=0)$.
\qquad

Decision Problem, again

Decision Problem for the Structure $(\mathfrak{M}, \mathcal{L})$:

Input: A First-Order Sentence φ in the Language \mathcal{L}. Output: \quad YES (if $\mathfrak{M} \vDash \varphi$) NO (if $\mathfrak{M} \notin \varphi$).

Examples:

- $\mathbb{N} \not \vDash \forall x \exists y(x+y=0)$
but $\mathbb{Z} \models \forall x \exists y(x+y=0)$.
- $\mathbb{Z} \not \vDash \forall x \exists y(x \neq 0 \rightarrow[x \cdot y=1])$ but $\mathbb{Q} \models \forall x \exists y(x \neq 0 \rightarrow[x \cdot y=1])$.
$\mathbb{R} \not \vDash \forall x \exists y(y \cdot y+x=0)$ but $\mathbb{C} \models \forall x \exists y(y \cdot y+x=0)$.

Decision Problem, again

Decision Problem for the Structure $(\mathfrak{M}, \mathcal{L})$:

Input: A First-Order Sentence φ in the Language \mathcal{L}. Output: \quad YES (if $\mathfrak{M} \vDash \varphi$) NO (if $\mathfrak{M} \not \vDash \varphi$).

Examples:

- $\mathbb{N} \not \vDash \forall x \exists y(x+y=0)$
but $\mathbb{Z} \models \forall x \exists y(x+y=0)$.
- $\mathbb{Z} \not \vDash \forall x \exists y(x \neq 0 \rightarrow[x \cdot y=1])$ but $\mathbb{Q} \models \forall x \exists y(x \neq 0 \rightarrow[x \cdot y=1])$.
- $\mathbb{Q} \not \vDash \forall x \exists y(0 \leqslant x \rightarrow[y \cdot y=x])$ but $\mathbb{R} \models \forall x \exists y(0 \leqslant x \rightarrow[y \cdot y=x])$.

Decision Problem, again

Decision Problem for the Structure $(\mathfrak{M}, \mathcal{L})$:

Input: A First-Order Sentence φ in the Language \mathcal{L}. Output: \quad YES (if $\mathfrak{M} \vDash \varphi$) NO (if $\mathfrak{M} \not \vDash \varphi$).

Examples:

- $\mathbb{N} \not \vDash \forall x \exists y(x+y=0)$
but $\mathbb{Z} \models \forall x \exists y(x+y=0)$.
- $\mathbb{Z} \notin \forall x \exists y(x \neq 0 \rightarrow[x \cdot y=1])$ but $\mathbb{Q} \models \forall x \exists y(x \neq 0 \rightarrow[x \cdot y=1])$.
- $\mathbb{Q} \mid \vDash \forall x \exists y(0 \leqslant x \rightarrow[y \cdot y=x])$ but $\mathbb{R} \models \forall x \exists y(0 \leqslant x \rightarrow[y \cdot y=x])$.
- $\mathbb{R} \not \vDash \forall x \exists y(y \cdot y+x=0)$ but $\mathbb{C} \models \forall x \exists y(y \cdot y+x=0)$.

Decidability of Mathematical Structures

The Decidability Problem for the Structures:

Decidability of Mathematical Structures

The Decidability Problem for the Structures:

Decidability of Mathematical Structures

The Decidability Problem for the Structures:

Decidability of Mathematical Structures

The Decidability Problem for the Structures:

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	$\langle\mathbb{N} ;<\rangle$	$\langle\mathbb{Z} ;<\rangle$	$\langle\mathbb{Q} ;<\rangle$	$\langle\mathbb{R} ;<\rangle$	-
$\{+\}$	$\langle\mathbb{N} ;+\rangle$	$\langle\mathbb{Z} ;+\rangle$	$\langle\mathbb{Q} ;+\rangle$	$\langle\mathbb{R} ;+\rangle$	$\langle\mathbb{C} ;+\rangle$
	$+\rangle$				

Decidability of Mathematical Structures

The Decidability Problem for the Structures:

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	$\langle\mathbb{N} ;<\rangle$	$\langle\mathbb{Z} ;<\rangle$	$\langle\mathbb{Q} ;<\rangle$	$\langle\mathbb{R} ;<\rangle$	-
$\{+\}$	$\langle\mathbb{N} ;+\rangle$	$\langle\mathbb{Z} ;+\rangle$	$\langle\mathbb{Q} ;+\rangle$	$\langle\mathbb{R} ;+\rangle$	$\langle\mathbb{C} ;+\rangle$
$\{\cdot\}$	$\langle\mathbb{N} ; \cdot\rangle$	$\langle\mathbb{Z} ; \cdot\rangle$	$\langle\mathbb{Q} ; \cdot\rangle$	$\langle\mathbb{R} ; \cdot\rangle$	$\langle\mathbb{C} ; \cdot\rangle$

Decidability of Mathematical Structures

The Decidability Problem for the Structures:

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	$\langle\mathbb{N} ;<\rangle$	$\langle\mathbb{Z} ;<\rangle$	$\langle\mathbb{Q} ;<\rangle$	$\langle\mathbb{R} ;<\rangle$	-
$\{+\}$	$\langle\mathbb{N} ;+\rangle$	$\langle\mathbb{Z} ;+\rangle$	$\langle\mathbb{Q} ;+\rangle$	$\langle\mathbb{R} ;+\rangle$	$\langle\mathbb{C} ;+\rangle$
$\{\cdot\}$	$\langle\mathbb{N} ; \cdot\rangle$	$\langle\mathbb{Z} ; \cdot\rangle$	$\langle\mathbb{Q} ; \cdot\rangle$	$\langle\mathbb{R} ; \cdot\rangle$	$\langle\mathbb{C} ; \cdot\rangle$
$\{+,<\}$	$\langle\mathbb{N} ;+,<\rangle$	$\langle\mathbb{Z} ;+,<\rangle$	$\langle\mathbb{Q} ;+,,<\rangle$	$\langle\mathbb{R} ;+,<\rangle$	-

Decidability of Mathematical Structures

The Decidability Problem for the Structures:

	\mathbb{N}	\mathbb{Z}	Q	R	\mathbb{C}
$\{<\}$	$\langle\mathbb{N} ;<\rangle$	$\langle\mathbb{Z} ;<\rangle$	$\langle\mathbb{Q} ;<\rangle$	$\langle\mathbb{R} ;<\rangle$	-
\{+\}	$\langle\mathbb{N} ;+\rangle$	$\langle\mathbb{Z} ;+\rangle$	$\langle\mathbb{Q} ;+\rangle$	$\langle\mathbb{R} ;+\rangle$	$\langle\mathbb{C} ;+\rangle$
\{ $\cdot\}$	$\langle\mathbb{N} ; \cdot\rangle$	$\langle\mathbb{Z} ; \cdot\rangle$	$\langle\mathbb{Q} ; \cdot\rangle$	$\langle\mathbb{R} ; \cdot\rangle$	$\langle\mathbb{C} ; \cdot\rangle$
$\{+,<\}$	$\langle\mathbb{N} ;+,<\rangle$	$\langle\mathbb{Z} ;+,<\rangle$	$\langle\mathbb{Q} ;+,<\rangle$	$\langle\mathbb{R} ;+,<\rangle$	-
$\{+, \cdot\}$	$\langle\mathbb{N} ;+, \cdot\rangle$	$\langle\mathbb{Z} ;+, \cdot\rangle$	$\langle\mathbb{Q} ;+, \cdot\rangle$	$\langle\mathbb{R} ;+, \cdot\rangle$	$\langle\mathbb{C} ;+, \cdot\rangle$
\cdots	(N;,$<\rangle$	(Zi,,$<\rangle$	Q; $\cdot \ll$	R; $\cdot \ll$	-
E	< $\mathbb{N} ; \exp$ 〉	-	-		

Decidability of Mathematical Structures

The Decidability Problem for the Structures:

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	$\langle\mathbb{N} ;<\rangle$	$\langle\mathbb{Z} ;<\rangle$	$\langle\mathbb{Q} ;<\rangle$	$\langle\mathbb{R} ;<\rangle$	-
$\{+\}$	$\langle\mathbb{N} ;+\rangle$	$\langle\mathbb{Z} ;+\rangle$	$\langle\mathbb{Q} ;+\rangle$	$\langle\mathbb{R} ;+\rangle$	$\langle\mathbb{C} ;+\rangle$
$\{\cdot\}$	$\langle\mathbb{N} ; \cdot\rangle$	$\langle\mathbb{Z} ; \cdot\rangle$	$\langle\mathbb{Q} ; \cdot\rangle$	$\langle\mathbb{R} ; \cdot\rangle$	$\langle\mathbb{C} ; \cdot\rangle$
$\{+,<\}$	$\langle\mathbb{N} ;+,<\rangle$	$\langle\mathbb{Z} ;+,<\rangle$	$\langle\mathbb{Q} ;+,<\rangle$	$\langle\mathbb{R} ;+,<\rangle$	-
$\{+, \cdot\}$	$\langle\mathbb{N} ;+, \cdot\rangle$	$\langle\mathbb{Z} ;+, \cdot\rangle$	$\langle\mathbb{Q} ;+, \cdot\rangle$	$\langle\mathbb{R} ;+, \cdot\rangle$	$\langle\mathbb{C} ;+, \cdot\rangle$
$\{\cdot,<\}$	$\langle\mathbb{N} ; \cdot,<\rangle$	$\langle\mathbb{Z} ; \cdot,<\rangle$	$\langle\mathbb{Q} ; \cdot,,<\rangle$	$\langle\mathbb{R} ; \cdot,<\rangle$	-

Decidability of Mathematical Structures

The Decidability Problem for the Structures:

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	$\langle\mathbb{N} ;<\rangle$	$\langle\mathbb{Z} ;<\rangle$	$\langle\mathbb{Q} ;<\rangle$	$\langle\mathbb{R} ;<\rangle$	-
$\{+\}$	$\langle\mathbb{N} ;+\rangle$	$\langle\mathbb{Z} ;+\rangle$	$\langle\mathbb{Q} ;+\rangle$	$\langle\mathbb{R} ;+\rangle$	$\langle\mathbb{C} ;+\rangle$
$\{\cdot\}$	$\langle\mathbb{N} ; \cdot\rangle$	$\langle\mathbb{Z} ; \cdot\rangle$	$\langle\mathbb{Q} ; \cdot\rangle$	$\langle\mathbb{R} ; \cdot\rangle$	$\langle\mathbb{C} ; \cdot\rangle$
$\{+,<\}$	$\langle\mathbb{N} ;+,<\rangle$	$\langle\mathbb{Z} ;+,<\rangle$	$\langle\mathbb{Q} ;+,<\rangle$	$\langle\mathbb{R} ;+,<\rangle$	-
$\{+, \cdot\}$	$\langle\mathbb{N} ;+, \cdot\rangle$	$\langle\mathbb{Z} ;+, \cdot\rangle$	$\langle\mathbb{Q} ;+, \cdot\rangle$	$\langle\mathbb{R} ;+, \cdot\rangle$	$\langle\mathbb{C} ;+, \cdot\rangle$
$\{\cdot,<\}$	$\langle\mathbb{N} ; \cdot,,<\rangle$	$\langle\mathbb{Z} ; \cdot,<\rangle$	$\langle\mathbb{Q} ; \cdot,,<\rangle$	$\langle\mathbb{R} ; \cdot,,<\rangle$	-
$\{+, \cdot,<\}$	$\langle\mathbb{N} ;+, \cdot,<\rangle$	$\langle\mathbb{Z} ;+, \cdot,,<\rangle$	$\langle\mathbb{Q} ;+, \cdot,<\rangle$	$\langle\mathbb{R} ;+, \cdot,<\rangle$	-

Decidability of Mathematical Structures

The Decidability Problem for the Structures:

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	$\langle\mathbb{N} ;<\rangle$	$\langle\mathbb{Z} ;<\rangle$	$\langle\mathbb{Q} ;<\rangle$	$\langle\mathbb{R} ;<\rangle$	-
$\{+\}$	$\langle\mathbb{N} ;+\rangle$	$\langle\mathbb{Z} ;+\rangle$	$\langle\mathbb{Q} ;+\rangle$	$\langle\mathbb{R} ;+\rangle$	$\langle\mathbb{C} ;+\rangle$
$\{\cdot\}$	$\langle\mathbb{N} ; \cdot \cdot$	$\langle\mathbb{Z} ; \cdot\rangle$	$\langle\mathbb{Q} ; \cdot\rangle$	$\langle\mathbb{R} ; \cdot\rangle$	$\langle\mathbb{C} ; \cdot \cdot$
$\{+,<\}$	$\langle\mathbb{N} ;+,<\rangle$	$\langle\mathbb{Z} ;+,<\rangle$	$\langle\mathbb{Q} ;+,<\rangle$	$\langle\mathbb{R} ;+,<\rangle$	-
$\{+, \cdot\}$	$\langle\mathbb{N} ;+, \cdot\rangle$	$\langle\mathbb{Z} ;+, \cdot\rangle$	$\langle\mathbb{Q} ;+, \cdot\rangle$	$\langle\mathbb{R} ;+, \cdot\rangle$	$\langle\mathbb{C} ;+, \cdot\rangle$
$\{\cdot,<\}$	$\langle\mathbb{N} ; \cdot,<\rangle$	$\langle\mathbb{Z} ; \cdot,<\rangle$	$\langle\mathbb{Q} ; \cdot,,<\rangle$	$\langle\mathbb{R} ; \cdot,,<\rangle$	-
$\{+, \cdot,<\}$	$\langle\mathbb{N} ;+, \cdot,<\rangle$	$\langle\mathbb{Z} ;+, \cdot \cdot,<\rangle$	$\langle\mathbb{Q} ;+, \cdot \cdot,<\rangle$	$\langle\mathbb{R} ;+, \cdot,,<\rangle$	-
\mathbf{E}	$\langle\mathbb{N} ; \exp \rangle$	-	-	$\left\langle\mathbb{R} ;+, \cdot, e^{x}\right\rangle$	$\left\langle\mathbb{C} ;+, \cdot, e^{x}\right\rangle$

New Results

- SALEHI, SAEED; On Axiomatizability of the Multiplicative Theory of Numbers, Fundamenta Informaticæ 159:3 (2018) 279-296.
- Assadi, Ziba \& Salehi, SaEEd; On Decidability and Axiomatizability of Some Ordered Structures, Soft Computing 23:11 (2019) 3615-3626.
- Salehi, Saeed \& Zarza, Mohammadsaleh; First-Order Continuous Induction and a Logical Study of Real Closed Fields, Bulletin of the Iranian Mathematical Society online (2019) DOI: 10.1007/s41980-019-00252-0.

New Results

- Salehi, Saeed; On Axiomatizability of the Multiplicative Theory of Numbers, Fundamenta Informaticæ 159:3 (2018) 279-296.

$$
\langle\mathbb{Q} ; \times\rangle,\langle\mathbb{R} ; \times\rangle,\langle\mathbb{C} ; \times\rangle .
$$

- Assadi, Ziba \& Salehi, Saeed; On Decidability and Axiomatizability of Some Ordered Structures, Soft Computing 23:11 (2019) 3615-3626.
- Salehi, Saeed \& Zarza, Mohammadsaleh; First-Order Continuous Induction and a Logical Study of Real Closed Fields, Bulletin of the Iranian Mathematical Society online (2019) DOI: 10.1007/s41980-019-00252-0.

New Results

- Salehi, Saeed; On Axiomatizability of the Multiplicative Theory of Numbers, Fundamenta Informaticæ 159:3 (2018) 279-296.

$$
\langle\mathbb{Q} ; \times\rangle,\langle\mathbb{R} ; \times\rangle,\langle\mathbb{C} ; \times\rangle .
$$

- Assadi, Ziba \& Salehi, Saeed; On Decidability and Axiomatizability of Some Ordered Structures, Soft Computing 23:11 (2019) 3615-3626.

$$
\langle\mathbb{Q} ; \times,<\rangle,\langle\mathbb{R} ; \times,<\rangle .
$$

- SALEHi, SAEED \& ZarZA, MOHAMMADSALEH; First-Order Continuous Induction and a Logical Study of Real Closed Fields, Bulletin of the Iranian Mathematical Society online (2019) Doi: 10.1007/s41980-019-00252-0.

New Results

- Salehi, Saeed; On Axiomatizability of the Multiplicative Theory of Numbers, Fundamenta Informaticæ 159:3 (2018) 279-296.

$$
\langle\mathbb{Q} ; \times\rangle,\langle\mathbb{R} ; \times\rangle,\langle\mathbb{C} ; \times\rangle .
$$

- Assadi, Ziba \& Salehi, Saeed; On Decidability and Axiomatizability of Some Ordered Structures, Soft Computing 23:11 (2019) 3615-3626.

$$
\langle\mathbb{Q} ; \times,<\rangle,\langle\mathbb{R} ; \times,<\rangle .
$$

- Salehi, Saeed \& Zarza, Mohammadsaleh; First-Order Continuous Induction and a Logical Study of Real Closed Fields, Bulletin of the Iranian Mathematical Society online (2019) Doi: 10.1007/s41980-019-00252-0.

$$
\langle\mathbb{R} ;+, \times,<\rangle
$$

FUNDAMENTA INFORMATICAE

On decidability and axiomatizability of some ordered structures

Ziba Assadi \& Saeed Salehi

```
Soft Computing
A Fusion of Foundations,
Methodologies and Applications
ISSN 1432-7643
Volume 23
Number 11
Soft Comput (2019) 23:3615-3626
DO1 10.1007/500500-018-3247-1
```


Q Springer

Axiomatizability of Mathematical Structures
 A Rather Complete Picture

Tarski's Exponential Function Problem
is open
Is the structure $\left\langle\mathbb{R} ;+, \cdot, e^{x}\right\rangle$ decidable?

Axiomatizability of Mathematical Structures

A Rather Complete Picture

Tarski's Exponential Function Problem
is open
Is the structure

Axiomatizability of Mathematical Structures

A Rather Complete Picture

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{\cdot\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{+\cdot<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\cdot\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{\cdot<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\cdot,<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
E	Δ_{1}	-	-	$己 ?$	Δ_{1}

Tarski's Exponential Function Problem
Is the structure $\left\langle\mathbb{R} ;+, \cdot, e^{x}\right\rangle$ decidable?

Axiomatizability of Mathematical Structures

A Rather Complete Picture

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{\cdot\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{+\cdot<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\cdot\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{\cdot<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\cdot<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
E	Δ_{1}	-	-	$己 ?$	Δ_{1}

Tarski's Exponential Function Problem
Is the structure $\left\langle\mathbb{R} ;+, \cdot, e^{x}\right\rangle$ decidable?
is open

Axiomatizability of Mathematical Structures

A Rather Complete Picture

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{\cdot\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}

$\{+,<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+, \cdot\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{, \cdot<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+, \cdot<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
E	Δ_{1}	-	-	$i ?$	Δ_{1}

Tarski's Exponential Function Problem
Is the structure $\left\langle\mathbb{R} ;+, \cdot, e^{x}\right\rangle$ decidable?
is open

Axiomatizability of Mathematical Structures

A Rather Complete Picture

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{\cdot\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{+,<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\cdot\}$	Δx_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{\cdot<\}$	Δx_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\cdot<\}$	Δx_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
E	Δx_{1}	-	-	$¿ ?$	Δ_{1}

Tarski's Exponential Function Problem
Is the structure $\left\langle\mathbb{R} ;+, \cdot, e^{x}\right\rangle$ decidable?
is open

Axiomatizability of Mathematical Structures

A Rather Complete Picture

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{\cdot\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{+,<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+, \cdot\}$	x_{1}	x_{1}	x_{1}	Δ_{1}	Δ_{1}
$\}$	Δx_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\cdot<\}$	Δx_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
E	Δx_{1}	-	-	$¿ ?$	Δ_{1}

[^1]
Axiomatizability of Mathematical Structures

A Rather Complete Picture

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{\cdot\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{+,<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+, \cdot\}$	x_{1}	x_{1}	x_{1}	Δ_{1}	Δ_{1}
$\{\cdot,<\}$	x_{1}	x_{1}	Δ_{1}	Δ_{1}	-
$\{+,<\}$	x_{1}	X_{1}	X_{1}	Δ_{1}	-
E	ΔX_{1}	-	-	$¿ ?$	Δ_{1}

[^2]
Axiomatizability of Mathematical Structures

A Rather Complete Picture

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{\cdot\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{+,<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+, \cdot\}$	x_{1}	x_{1}	x_{1}	Δ_{1}	Δ_{1}
$\{\cdot,<\}$	x_{1}	x_{1}	Δ_{1}	Δ_{1}	-
$\{+, \cdot,<\}$	x_{1}	x_{1}	x_{1}	Δ_{1}	-

Tarski's Exponential Function Problem

Axiomatizability of Mathematical Structures

A Rather Complete Picture

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{\cdot\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{+,<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+, \cdot\}$	x_{1}	x_{1}	x_{1}	Δ_{1}	Δ_{1}
$\{\cdot,<\}$	x_{1}	x_{1}	Δ_{1}	Δ_{1}	-
$\{+, \cdot,<\}$	x_{1}	x_{1}	x_{1}	Δ_{1}	-
\mathbf{E}	x_{1}	-	-	¿?	x_{1}

Tarski's Exponential Function Problem
is open
Is the structure $\left\langle\mathbb{R} ;+\cdot \cdot, e^{x}\right\rangle$ decidable?

Axiomatizability of Mathematical Structures

A Rather Complete Picture

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{\cdot\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{+,<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+, \cdot\}$	x_{1}	x_{1}	x_{1}	Δ_{1}	Δ_{1}
$\{\cdot,<\}$	x_{1}	x_{1}	Δ_{1}	Δ_{1}	-
$\{+, \cdot,<\}$	x_{1}	x_{1}	x_{1}	Δ_{1}	-
\mathbf{E}	x_{1}	-	-	¿?	x_{1}

Tarski's Exponential Function Problem
is open...

Axiomatizability of Mathematical Structures

A Rather Complete Picture

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{\cdot\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{+,<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+, \cdot\}$	x_{1}	x_{1}	x_{1}	Δ_{1}	Δ_{1}
$\{\cdot,<\}$	x_{1}	x_{1}	Δ_{1}	Δ_{1}	-
$\{+, \cdot,<\}$	x_{1}	x_{1}	x_{1}	Δ_{1}	-
\mathbf{E}	x_{1}	-	-	¿?	x_{1}

Tarski's Exponential Function Problem
Is the structure $\left\langle\mathbb{R} ;+, \cdot, e^{x}\right\rangle$ decidable?
is open...

Thank Wou!

Thanks to

The Participants For Listening...

 andThe Organizers For Taking Care of Everything...

Thank Wou！

The Participants ．．．．．．．．．．．．．．．．．For Listening．．．米䊏米 and 米米米

The Organizers ．．．．For Taking Care of Everything．．．

Thank Wou！

The Participants ．．．．．．．．．．．．．．．．．．For Listening．．．米䊏米 and 粠粠米

The Organizers ．．．．For Taking Care of Everything．．．

SAEEDSALEHI．ir

[^0]:
 vize os ascinviovg.

 Abistotle, Anal. Post., lib, L cap. xı.

[^1]: Tarski's Exponential Function Problem

[^2]: Tarski's Exponential Function Problem

